Rational Design of a Stable Fe‐rich Ni‐Fe Layered Double Hydroxide for the Industrially Relevant Dynamic Operation of Alkaline Water Electrolyzers

نویسندگان

چکیده

Nickel-iron layered double hydroxides (Ni-Fe LDHs) consist of stacked Fe3+-doped positively charged Ni-hydroxide layers containing charge-balancing anions and water molecules between the layers. Although Ni-Fe LDHs are highly active in oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that inclusion a higher Fe content (>40%) than theoretical Fe3+ limit (≈25%) permitted by can lead to improved structural stability. An Fe-rich LDH electrode therefore prepared via growth strategy controlled corrosion substrate, enabling incorporation additional Fe2+ into Ni2+-Fe3+ structure. Indeed, microstructural elemental analysis confirm presence Fe2+. This not only offers low OER overpotential (≈270 mV at 200 mA cm−2) but also exhibits excellent dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, practical feasibility demonstrated single-cell (34.56 cm2) operation. These findings expected aid development reliable electrodes for use commercial electrolyzers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on C...

متن کامل

Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction.

Fabricating active materials into specific macrostructures is critical in the pursuit of high electro-catalytic activity. Herein we demonstrate that a three-dimensional (3D) architecture of NiFe layered double hydroxide (NiFe-LDH) significantly reduced the onset potential, yielded high current density at small overpotentials, and showed outstanding stability in electrochemical oxygen evolution ...

متن کامل

investigating the integration of translation technologies into translation programs in iranian universities: basis for a syllabus design in translation technology

today, information technology and computers are indispensable tools of any profession and translation technologies have become an indispensable part of translator’s workstation. with the increasing demands for high productivity and speed as well as consistency and with the rise of new demands for translation and localization, it is necessary for translators to be familiar with market demands an...

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Energy Materials

سال: 2023

ISSN: ['1614-6832', '1614-6840']

DOI: https://doi.org/10.1002/aenm.202204403